Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Transplant ; 27(5): e14451, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518031

RESUMO

BACKGROUND: As COVID-19-positive donors are becoming more common, there is an increasing need for the transplant community to evaluate the safety and efficacy of organ transplant from a SARS-CoV-2-infected donor. METHODS: Here we describe outcomes of two pediatric kidney transplant recipients who were vaccinated against COVID-19 and received their allograft from a SARS-CoV-2-positive donor. RESULTS: Both donors did not die from a COVID-19-related illness; the first donor had 1 week of COVID-19 symptoms 4 weeks prior to donation and the second was asymptomatic. Donor 1 had a Ct of 33.4 at 3 days and Donor 2 with a Ct of 37.2 at 16 days prior to donation. The first recipient was positive for SARS-CoV-2 anti-spike IgG on the day of transplant, but the second patient was negative and both patients received IVIg perioperatively. There was no evidence of SARS-CoV-2 transmission or compromised renal function at 86- and 80-day post-transplant, respectively. CONCLUSIONS: This case series suggests favorable short-term outcomes with accepting SARS-CoV-2-positive donors for pediatric renal transplantation, after thorough evaluation of the donor's risk for transmission, assessing the recipient's serologic status to SARS-CoV-2, and considering pre-emptive measures to mitigate the risk for severe COVID-19 should the recipient acquire donor-derived SARS-CoV-2.


Assuntos
COVID-19 , Transplante de Rim , Transplante de Órgãos , Humanos , Criança , SARS-CoV-2 , Doadores de Tecidos , Imunoglobulina G
2.
mSphere ; 7(1): e0089621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019667

RESUMO

The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. While the molecular tools are highly developed for the apicomplexan Toxoplasma gondii, the closely related parasite Neospora caninum lacks efficient tools for genetic manipulation. To enable efficient homologous recombination in N. caninum, we targeted the Ku heterodimer DNA repair mechanism in the genomic reference strain, Nc-Liverpool (NcLiv), and show that deletion of Ku80 results in a destabilization and loss of its partner Ku70. Disruption of Ku80 generated parasites in which genes are efficiently epitope tagged and only short homology regions are required for gene knockouts. We used this improved strain to target novel nonessential genes encoding dense granule proteins that are unique to N. caninum or conserved in T. gondii. To expand the utility of this strain for essential genes, we developed the auxin-inducible degron system for N. caninum using parasite-specific promoters. As a proof of concept, we knocked down a novel nuclear factor in both N. caninum and T. gondii and showed that it is essential for survival of both parasites. Together, these efficient knockout and knockdown technologies will enable the field to unravel specific gene functions in N. caninum, which is likely to aid in the identification of targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. IMPORTANCE Neospora caninum is a parasite with veterinary relevance, inducing severe disease in dogs and reproductive disorders in ruminants, especially cattle, leading to major losses. The close phylogenetic relationship to Toxoplasma gondii and the lack of pathogenicity in humans drives an interest of the scientific community toward using N. caninum as a model to study the pathogenicity of T. gondii. To enable this comparison, it is important to develop efficient molecular tools for N. caninum, to gain accuracy and save time in genetic manipulation protocols. Here, we have developed base strains and protocols using the genomic reference strain of N. caninum to enable efficient knockout and knockdown assays in this model. We demonstrate that these tools are effective in targeting known and previously unexplored genes. Thus, these tools will greatly improve the study of this protozoan, as well as enhance its ability to serve as a model to understand other apicomplexan parasites.


Assuntos
Neospora , Toxoplasma , Animais , Bovinos , Cães , Técnicas de Inativação de Genes , Neospora/genética , Filogenia , Reprodução , Toxoplasma/genética
3.
PLoS One ; 15(5): e0232552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374791

RESUMO

Toxoplasma gondii is an obligate intracellular parasite which is capable of establishing life-long chronic infection in any mammalian host. During the intracellular life cycle, the parasite secretes an array of proteins into the parasitophorous vacuole (PV) where it resides. Specialized organelles called the dense granules secrete GRA proteins that are known to participate in nutrient acquisition, immune evasion, and host cell-cycle manipulation. Although many GRAs have been discovered which are expressed during the acute infection mediated by tachyzoites, little is known about those that participate in the chronic infection mediated by the bradyzoite form of the parasite. In this study, we sought to uncover novel bradyzoite-upregulated GRA proteins using proximity biotinylation, which we previously used to examine the secreted proteome of the tachyzoites. Using a fusion of the bradyzoite upregulated protein MAG1 to BirA* as bait and a strain with improved switch efficiency, we identified a number of novel GRA proteins which are expressed in bradyzoites. After using the CRISPR/Cas9 system to characterize these proteins by gene knockout, we focused on one of these GRAs (GRA55) and found it was important for the establishment or maintenance of cysts in the mouse brain. These findings highlight new components of the GRA proteome of the tissue-cyst life stage of T. gondii and identify potential targets that are important for maintenance of parasite persistence in vivo.


Assuntos
Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Animais , Biotinilação , Encéfalo/metabolismo , Encéfalo/parasitologia , Sistemas CRISPR-Cas , Feminino , Técnicas de Inativação de Genes , Genes de Protozoários , Humanos , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia , Vacúolos/metabolismo , Virulência
4.
Methods Mol Biol ; 2071: 323-346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31758461

RESUMO

BioID is an in vivo biotinylation system developed to examine the proximal and interacting proteins of a bait protein within a subcellular compartment. This approach has been exploited in Toxoplasma for protein-protein interaction studies and proteomic characterizations of intracellular compartments. The BioID method requires constructing a translational fusion between a protein of interest and the promiscuous biotin ligase BirA∗ (a mutant of the E. coli protein BirA) which enables trafficking of the protein to the correct intracellular compartment and association with its partners. Proximity labelling occurs upon addition of biotin to the media and the biotinylated target proteins are then be purified using stringent conditions via streptavidin chromatography. In this chapter, we describe the methodology to fuse BirA∗ (or the newer variant BioID2) to a bait protein using endogenous gene tagging in Toxoplasma and then identify the proximal and interacting proteins using in vivo biotinylation, streptavidin purification and mass spectrometric analysis.


Assuntos
Proteoma/metabolismo , Toxoplasma/metabolismo , Biotina/metabolismo , Biotinilação , Cromatografia , Espectrometria de Massas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteômica
6.
7.
Sci Rep ; 7(1): 3768, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630403

RESUMO

The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. We have established a system specifically designed for Neospora caninum, and used this system as a heterologous platform for the expression of foreign genes. Plasmid constructs containing fluorescent proteins or targeted genes of Toxoplasma gondii, driven by N. caninum promoters, have yielded robust expression and correct trafficking of target gene products as assessed by immunofluorescence assays and Western blot analyses. Using this approach, we here demonstrated that N. caninum expressing T. gondii's GRA15 and ROP16 kinase are biologically active and induced immunological phenotypes consistent with T. gondii strains. N. caninum expressing TgGRA15 differentially disturbed the NF-κB pathway, inducing an increased IL-12 production. On the other hand, N. caninum expressing TgROP16 induced host STAT3 phosphorylation and consequent reduction of IL-12 synthesis. These results indicate that heterologous gene expression in N. caninum is a useful tool for the study of specific gene functions and may allow the identification of antigenic targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. Additionally, these observations may prove to be useful for the development of vaccine protocols to control toxoplasmosis and/or neosporosis.

8.
Cell Microbiol ; 19(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27696623

RESUMO

The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity-dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin-dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3-null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.


Assuntos
Proteínas de Protozoários/fisiologia , Toxoplasma/ultraestrutura , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Humanos , Fosfatidato Fosfatase/fisiologia , Fosfatidato Fosfatase/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Toxoplasma/fisiologia , Virulência
9.
Front Microbiol ; 7: 1456, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27679624

RESUMO

Due to the high prevalence and economic impact of neosporosis, the development of safe and effective vaccines and therapies against this parasite has been a priority in the field and is crucial to limit horizontal and vertical transmission in natural hosts. Limited data is available regarding factors that regulate the immune response against this parasite and such knowledge is essential in order to understand Neospora caninum induced pathogenesis. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes, including growth, differentiation, apoptosis, and immune-mediated responses. In that sense, our goal was to understand the role of MAPKs during the infection by N. caninum. We found that p38 phosphorylation was quickly triggered in macrophages stimulated by live tachyzoites and antigen extracts, while its chemical inhibition resulted in upregulation of IL-12p40 production and augmented B7/MHC expression. In vivo blockade of p38 resulted in an amplified production of cytokines, which preceded a reduction in latent parasite burden and enhanced survival against the infection. Additionally, the experiments indicate that the p38 activation is induced by a mechanism that depends on GPCR, PI3K and AKT signaling pathways, and that the phenomena here observed is distinct that those induced by Toxoplasma gondii's GRA24 protein. Altogether, these results showed that N. caninum manipulates p38 phosphorylation in its favor, in order to downregulate the host's innate immune responses. Additionally, those results infer that active interference in this signaling pathway may be useful for the development of a new therapeutic strategy against neosporosis.

10.
mBio ; 7(4)2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27486190

RESUMO

UNLABELLED: Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. IMPORTANCE: Most intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma, this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease.


Assuntos
Proteínas de Protozoários/análise , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/patogenicidade , Vacúolos/química , Vacúolos/parasitologia , Fatores de Virulência/análise , Biotinilação , Células Cultivadas , Cromatografia de Afinidade , Fibroblastos/parasitologia , Humanos , Espectrometria de Massas , Coloração e Rotulagem
11.
Pediatr Dermatol ; 33(5): e276-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27469423

RESUMO

This report details how social media communication was used in a group of teens to diagnose cutaneous leishmaniasis that they acquired during a trip to Israel. Their posts quickly brought the cluster to the attention of the teens and their parents, leading to prompt recognition of the true etiology of their lesions and appropriate treatment.


Assuntos
Surtos de Doenças , Leishmaniose Cutânea/diagnóstico , Mídias Sociais , Adolescente , Feminino , Humanos , Israel , Leishmaniose Cutânea/epidemiologia , Viagem
12.
mSphere ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303719

RESUMO

Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...